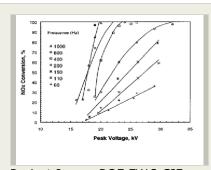
Center Innovation Fund: GSFC CIF

Decomposing Nitrous Oxide Thruster using Dielectric Barrier Discharge

Completed Technology Project (2011 - 2012)

Project Introduction

One of NASA's Grand Challenges is to design more efficient propulsion systems. The decomposing nitrous thruster with a dielectric barrier discharge is only one step away from the simplicity of cold gas thrusters, yet offers a theoretical Isp of 200 seconds – closer to the performance of monopropellant technologies.


The University of Maryland is proposing to use a dielectric barrier discharge (DBD) as a means to dissociate N2O. DBD uses alternating high voltage differences between two electrodes to create strong electric fields. One or both of the electrodes is covered in a dielectric, and a gap in between allows gas to pass through. Nitrous Oxide sent through the gap between the electrodes has its free electrons accelerated by the large E-field, and in the process the electrons collide with N2O molecules.

Anticipated Benefits

N/A

Primary U.S. Work Locations and Key Partners

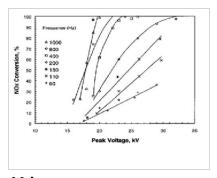
Project Image ROE FY12 CIF 277 CC Decomposing Nitrous Oxide Thruster using Dielectric Barrier Discharge

Table of Contents

Project Introduction	1	
Anticipated Benefits	1	
Primary U.S. Work Locations		
and Key Partners	1	
Images	2	
Project Website:		
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	3	
Technology Areas	3	

Center Innovation Fund: GSFC CIF

Decomposing Nitrous Oxide Thruster using Dielectric Barrier Discharge


Completed Technology Project (2011 - 2012)

Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead Organization	NASA Center	Greenbelt, Maryland
University of Maryland- College Park(UMCP)	Supporting Organization	Academia	College Park, Maryland

Primary U.S. Work Locations

Maryland

Images

44.jpg

Project Image ROE FY12 CIF 277 CC Decomposing Nitrous Oxide Thruster using Dielectric Barrier Discharge (https://techport.nasa.gov/imag e/1267)

Project Website:

http://aetd.gsfc.nasa.gov/

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Innovation Fund: GSFC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

Peter M Hughes

Project Manager:

Michael A Johnson

Principal Investigator:

Eric H Cardiff

Co-Investigator:

Raymond Sedwick

Center Innovation Fund: GSFC CIF

Decomposing Nitrous Oxide Thruster using Dielectric Barrier Discharge

Completed Technology Project (2011 - 2012)

Technology Areas

Primary:

